Texas Holdem Hand Odds Probabilities
Introduction
In Texas Hold 'Em a hand is said to be dominated if another player has a similar, and better, hand. To be more specific, a dominated hand is said to rely on three or fewer outs (cards) to beat the hand dominating it, not counting difficult multiple-card draws. There are four types of domination, as follows.
Those are the probabilities and odds for all 5-card poker hands: Poker Hand Odds for Texas Hold’em If you’re playing Texas Hold’em, you have 7 cards to chose your hand from. There are 133,784,560 to deal 7 random cards. Poker odds give you the probability of winning any given hand. Higher odds mean a lower chance of winning, meaning that when the odds are large against you it’ll be a long time until you succeed. They are usually displayed as a number to number ratio and indicate the potential return on investment; for example, odds of nine to one (9:1) means. Texas Hold'Em Dominated Hand Probabilities Introduction. In Texas Hold 'Em a hand is said to be dominated if another player has a similar, and better, hand. To be more specific, a dominated hand is said to rely on three or fewer outs (cards) to beat the hand dominating it, not counting difficult multiple-card draws. Poker hands odds & outs: a crash course-guide on poker odds, pot odds, probabilities & odds charts so you can win at Texas Hold’em at the tables or online. One of the most important things that a poker player should know is what their poker odds are in a given situation.
- A pair is dominated by a higher pair. For example J-J is dominated by Q-Q. Only two cards help the J-J, the other two jacks.
- A non-pair is dominated by a pair of either card. For example, Q-5 is dominated by Q-Q or 5-5. In the case of 5-5, three cards only will help the Q-5, the other three queens.
- A non-pair is dominated by a pair greater than the lower card. For example, Q-5 is dominated by 8-8. Only three cards will help the Q-5, the other three queens.
- A non-pair is dominated by another non-pair if there if there is a shared card, and the rank of the opponent's non-shared card is greater the dominated non-shared card. For example Q-5 is dominated by K-5 or Q-7. In the former case (K-5 over Q-5) only three cards can help Q-5, the other three queens.
That said, the following tables present the probability of every two-card hand being dominated, according to the total number of players.
Probability of Domination — PairsExpand
Cards | 2 Players | 3 Players | 4 Players | 5 Players | 6 Players | 7 Players | 8 Players | 9 Players | 10 Players |
---|---|---|---|---|---|---|---|---|---|
2,2 | 0.0588 | 0.1142 | 0.1659 | 0.2150 | 0.2609 | 0.3044 | 0.3449 | 0.3835 | 0.4195 |
3,3 | 0.0540 | 0.1049 | 0.1532 | 0.1983 | 0.2419 | 0.2826 | 0.3212 | 0.3576 | 0.3922 |
4,4 | 0.0489 | 0.0956 | 0.1400 | 0.1820 | 0.2220 | 0.2602 | 0.2966 | 0.3313 | 0.3640 |
5,5 | 0.0441 | 0.0862 | 0.1265 | 0.1653 | 0.2021 | 0.2376 | 0.2710 | 0.3031 | 0.3345 |
6,6 | 0.0392 | 0.0767 | 0.1133 | 0.1481 | 0.1816 | 0.2136 | 0.2448 | 0.2745 | 0.3036 |
7,7 | 0.0344 | 0.0675 | 0.0996 | 0.1306 | 0.1605 | 0.1895 | 0.2177 | 0.2447 | 0.2709 |
8,8 | 0.0295 | 0.0581 | 0.0858 | 0.1129 | 0.1391 | 0.1648 | 0.1894 | 0.2138 | 0.2369 |
9,9 | 0.0246 | 0.0485 | 0.0720 | 0.0947 | 0.1173 | 0.1391 | 0.1604 | 0.1813 | 0.2017 |
T,T | 0.0196 | 0.0389 | 0.0578 | 0.0765 | 0.0947 | 0.1126 | 0.1300 | 0.1478 | 0.1649 |
J,J | 0.0147 | 0.0293 | 0.0435 | 0.0577 | 0.0719 | 0.0856 | 0.0992 | 0.1132 | 0.1262 |
Q,Q | 0.0098 | 0.0195 | 0.0292 | 0.0389 | 0.0483 | 0.0579 | 0.0674 | 0.0766 | 0.0861 |
K,K | 0.0049 | 0.0098 | 0.0147 | 0.0196 | 0.0245 | 0.0294 | 0.0341 | 0.0391 | 0.0439 |
A,A | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Probability of Domination — Non-PairsExpand
Cards | 2 Players | 3 Players | 4 Players | 5 Players | 6 Players | 7 Players | 8 Players | 9 Players | 10 Players |
---|---|---|---|---|---|---|---|---|---|
3,2 | 0.2742 | 0.4785 | 0.6289 | 0.7389 | 0.8187 | 0.8753 | 0.9156 | 0.9438 | 0.9629 |
4,2 | 0.2645 | 0.4634 | 0.6124 | 0.7227 | 0.8036 | 0.8626 | 0.9049 | 0.9350 | 0.9562 |
4,3 | 0.2496 | 0.4417 | 0.5877 | 0.6986 | 0.7815 | 0.8433 | 0.8888 | 0.9220 | 0.9459 |
5,2 | 0.2546 | 0.4487 | 0.5956 | 0.7060 | 0.7881 | 0.8489 | 0.8934 | 0.9255 | 0.9486 |
5,3 | 0.2399 | 0.4263 | 0.5701 | 0.6805 | 0.7645 | 0.8279 | 0.8754 | 0.9108 | 0.9367 |
5,4 | 0.2253 | 0.4036 | 0.5439 | 0.6539 | 0.7393 | 0.8050 | 0.8556 | 0.8937 | 0.9227 |
6,2 | 0.2450 | 0.4338 | 0.5786 | 0.6885 | 0.7718 | 0.8344 | 0.8809 | 0.9152 | 0.9403 |
6,3 | 0.2302 | 0.4110 | 0.5525 | 0.6620 | 0.7470 | 0.8118 | 0.8614 | 0.8986 | 0.9266 |
6,4 | 0.2154 | 0.3881 | 0.5254 | 0.6344 | 0.7199 | 0.7869 | 0.8394 | 0.8796 | 0.9105 |
6,5 | 0.2008 | 0.3647 | 0.4975 | 0.6047 | 0.6911 | 0.7599 | 0.8146 | 0.8581 | 0.8919 |
7,2 | 0.2350 | 0.4186 | 0.5611 | 0.6709 | 0.7550 | 0.8191 | 0.8676 | 0.9042 | 0.9311 |
7,3 | 0.2204 | 0.3955 | 0.5340 | 0.6430 | 0.7285 | 0.7948 | 0.8461 | 0.8854 | 0.9155 |
7,4 | 0.2057 | 0.3724 | 0.5065 | 0.6138 | 0.7000 | 0.7681 | 0.8220 | 0.8642 | 0.8971 |
7,5 | 0.1910 | 0.3484 | 0.4776 | 0.5833 | 0.6693 | 0.7388 | 0.7951 | 0.8402 | 0.8761 |
7,6 | 0.1763 | 0.3244 | 0.4478 | 0.5510 | 0.6365 | 0.7071 | 0.7651 | 0.8128 | 0.8514 |
8,2 | 0.2255 | 0.4034 | 0.5434 | 0.6526 | 0.7375 | 0.8032 | 0.8536 | 0.8923 | 0.9213 |
8,3 | 0.2105 | 0.3800 | 0.5157 | 0.6237 | 0.7095 | 0.7771 | 0.8300 | 0.8714 | 0.9034 |
8,4 | 0.1959 | 0.3563 | 0.4870 | 0.5932 | 0.6791 | 0.7481 | 0.8037 | 0.8478 | 0.8828 |
8,5 | 0.1812 | 0.3323 | 0.4574 | 0.5614 | 0.6467 | 0.7168 | 0.7743 | 0.8208 | 0.8586 |
8,6 | 0.1666 | 0.3078 | 0.4272 | 0.5277 | 0.6122 | 0.6829 | 0.7416 | 0.7904 | 0.8311 |
8,7 | 0.1518 | 0.2829 | 0.3952 | 0.4922 | 0.5750 | 0.6453 | 0.7056 | 0.7563 | 0.7992 |
9,2 | 0.2156 | 0.3878 | 0.5250 | 0.6338 | 0.7194 | 0.7862 | 0.8388 | 0.8793 | 0.9104 |
9,3 | 0.2010 | 0.3643 | 0.4968 | 0.6039 | 0.6895 | 0.7583 | 0.8130 | 0.8564 | 0.8904 |
9,4 | 0.1862 | 0.3402 | 0.4674 | 0.5720 | 0.6577 | 0.7274 | 0.7843 | 0.8300 | 0.8668 |
9,5 | 0.1714 | 0.3157 | 0.4371 | 0.5388 | 0.6234 | 0.6937 | 0.7523 | 0.8003 | 0.8398 |
9,6 | 0.1569 | 0.2911 | 0.4061 | 0.5036 | 0.5868 | 0.6573 | 0.7167 | 0.7667 | 0.8088 |
9,7 | 0.1419 | 0.2658 | 0.3734 | 0.4669 | 0.5476 | 0.6174 | 0.6776 | 0.7289 | 0.7730 |
9,8 | 0.1274 | 0.2403 | 0.3400 | 0.4282 | 0.5061 | 0.5742 | 0.6342 | 0.6867 | 0.7320 |
T,2 | 0.2057 | 0.3722 | 0.5066 | 0.6143 | 0.7005 | 0.7688 | 0.8229 | 0.8654 | 0.8987 |
T,3 | 0.1910 | 0.3485 | 0.4772 | 0.5831 | 0.6691 | 0.7387 | 0.7950 | 0.8402 | 0.8762 |
T,4 | 0.1764 | 0.3240 | 0.4474 | 0.5501 | 0.6352 | 0.7055 | 0.7638 | 0.8111 | 0.8499 |
T,5 | 0.1617 | 0.2995 | 0.4163 | 0.5153 | 0.5991 | 0.6696 | 0.7286 | 0.7784 | 0.8196 |
T,6 | 0.1470 | 0.2742 | 0.3843 | 0.4790 | 0.5606 | 0.6305 | 0.6904 | 0.7413 | 0.7847 |
T,7 | 0.1323 | 0.2487 | 0.3512 | 0.4411 | 0.5196 | 0.5881 | 0.6478 | 0.6996 | 0.7448 |
T,8 | 0.1176 | 0.2227 | 0.3169 | 0.4008 | 0.4754 | 0.5418 | 0.6009 | 0.6532 | 0.6993 |
T,9 | 0.1030 | 0.1965 | 0.2817 | 0.3586 | 0.4286 | 0.4923 | 0.5492 | 0.6010 | 0.6473 |
J,2 | 0.1960 | 0.3566 | 0.4877 | 0.5944 | 0.6808 | 0.7505 | 0.8063 | 0.8508 | 0.8862 |
J,3 | 0.1813 | 0.3324 | 0.4578 | 0.5617 | 0.6476 | 0.7180 | 0.7757 | 0.8227 | 0.8610 |
J,4 | 0.1665 | 0.3078 | 0.4271 | 0.5275 | 0.6120 | 0.6828 | 0.7419 | 0.7911 | 0.8317 |
J,5 | 0.1519 | 0.2827 | 0.3954 | 0.4916 | 0.5741 | 0.6441 | 0.7042 | 0.7549 | 0.7976 |
J,6 | 0.1371 | 0.2573 | 0.3621 | 0.4537 | 0.5336 | 0.6026 | 0.6625 | 0.7143 | 0.7590 |
J,7 | 0.1223 | 0.2314 | 0.3284 | 0.4142 | 0.4901 | 0.5572 | 0.6164 | 0.6688 | 0.7145 |
J,8 | 0.1077 | 0.2050 | 0.2931 | 0.3725 | 0.4442 | 0.5083 | 0.5658 | 0.6174 | 0.6638 |
J,9 | 0.0931 | 0.1785 | 0.2571 | 0.3289 | 0.3948 | 0.4553 | 0.5100 | 0.5601 | 0.6061 |
J,T | 0.0783 | 0.1515 | 0.2199 | 0.2837 | 0.3427 | 0.3979 | 0.4493 | 0.4967 | 0.5409 |
Q,2 | 0.1862 | 0.3406 | 0.4685 | 0.5739 | 0.6604 | 0.7312 | 0.7886 | 0.8352 | 0.8727 |
Q,3 | 0.1713 | 0.3161 | 0.4379 | 0.5402 | 0.6255 | 0.6968 | 0.7557 | 0.8044 | 0.8445 |
Q,4 | 0.1568 | 0.2910 | 0.4062 | 0.5045 | 0.5880 | 0.6590 | 0.7189 | 0.7696 | 0.8119 |
Q,5 | 0.1422 | 0.2658 | 0.3736 | 0.4671 | 0.5482 | 0.6180 | 0.6783 | 0.7299 | 0.7744 |
Q,6 | 0.1273 | 0.2400 | 0.3400 | 0.4280 | 0.5055 | 0.5734 | 0.6333 | 0.6857 | 0.7312 |
Q,7 | 0.1126 | 0.2139 | 0.3048 | 0.3868 | 0.4600 | 0.5254 | 0.5835 | 0.6357 | 0.6818 |
Q,8 | 0.0979 | 0.1875 | 0.2691 | 0.3435 | 0.4113 | 0.4730 | 0.5289 | 0.5800 | 0.6257 |
Q,9 | 0.0833 | 0.1606 | 0.2321 | 0.2983 | 0.3600 | 0.4166 | 0.4689 | 0.5173 | 0.5619 |
Q,T | 0.0687 | 0.1332 | 0.1940 | 0.2516 | 0.3052 | 0.3557 | 0.4032 | 0.4480 | 0.4894 |
Q,J | 0.0540 | 0.1055 | 0.1547 | 0.2020 | 0.2474 | 0.2902 | 0.3313 | 0.3707 | 0.4082 |
K,2 | 0.1763 | 0.3246 | 0.4491 | 0.5532 | 0.6395 | 0.7111 | 0.7702 | 0.8185 | 0.8579 |
K,3 | 0.1616 | 0.2998 | 0.4178 | 0.5178 | 0.6027 | 0.6740 | 0.7343 | 0.7848 | 0.8269 |
K,4 | 0.1469 | 0.2745 | 0.3851 | 0.4808 | 0.5633 | 0.6343 | 0.6948 | 0.7466 | 0.7908 |
K,5 | 0.1322 | 0.2491 | 0.3517 | 0.4422 | 0.5211 | 0.5904 | 0.6509 | 0.7037 | 0.7494 |
K,6 | 0.1175 | 0.2230 | 0.3171 | 0.4013 | 0.4763 | 0.5431 | 0.6025 | 0.6550 | 0.7016 |
K,7 | 0.1029 | 0.1964 | 0.2814 | 0.3586 | 0.4285 | 0.4918 | 0.5490 | 0.6007 | 0.6473 |
K,8 | 0.0881 | 0.1697 | 0.2447 | 0.3139 | 0.3777 | 0.4367 | 0.4905 | 0.5397 | 0.5853 |
K,9 | 0.0734 | 0.1423 | 0.2069 | 0.2675 | 0.3238 | 0.3765 | 0.4259 | 0.4720 | 0.5148 |
K,T | 0.0588 | 0.1146 | 0.1678 | 0.2183 | 0.2665 | 0.3120 | 0.3555 | 0.3961 | 0.4350 |
K,J | 0.0441 | 0.0866 | 0.1277 | 0.1671 | 0.2058 | 0.2426 | 0.2780 | 0.3125 | 0.3452 |
K,Q | 0.0294 | 0.0582 | 0.0865 | 0.1141 | 0.1414 | 0.1679 | 0.1940 | 0.2195 | 0.2444 |
A,2 | 0.1665 | 0.3086 | 0.4294 | 0.5316 | 0.6177 | 0.6901 | 0.7505 | 0.8009 | 0.8425 |
A,3 | 0.1517 | 0.2835 | 0.3970 | 0.4949 | 0.5791 | 0.6509 | 0.7120 | 0.7641 | 0.8080 |
A,4 | 0.1372 | 0.2578 | 0.3636 | 0.4565 | 0.5376 | 0.6082 | 0.6695 | 0.7227 | 0.7684 |
A,5 | 0.1224 | 0.2318 | 0.3294 | 0.4164 | 0.4934 | 0.5618 | 0.6223 | 0.6754 | 0.7225 |
A,6 | 0.1077 | 0.2054 | 0.2940 | 0.3741 | 0.4462 | 0.5115 | 0.5702 | 0.6228 | 0.6701 |
A,7 | 0.0931 | 0.1787 | 0.2575 | 0.3300 | 0.3963 | 0.4572 | 0.5129 | 0.5638 | 0.6101 |
A,8 | 0.0783 | 0.1516 | 0.2200 | 0.2837 | 0.3428 | 0.3983 | 0.4498 | 0.4976 | 0.5418 |
A,9 | 0.0637 | 0.1241 | 0.1810 | 0.2352 | 0.2866 | 0.3347 | 0.3804 | 0.4237 | 0.4647 |
A,T | 0.0490 | 0.0959 | 0.1411 | 0.1847 | 0.2264 | 0.2664 | 0.3049 | 0.3417 | 0.3770 |
A,J | 0.0343 | 0.0677 | 0.1003 | 0.1320 | 0.1629 | 0.1931 | 0.2223 | 0.2507 | 0.2784 |
A,Q | 0.0195 | 0.0389 | 0.0582 | 0.0769 | 0.0956 | 0.1140 | 0.1320 | 0.1500 | 0.1676 |
A,K | 0.0049 | 0.0098 | 0.0147 | 0.0195 | 0.0243 | 0.0292 | 0.0340 | 0.0388 | 0.0436 |
Methodology: These tables were created by a random simulation. Each cell in the table above for pairs was based on 7.8 million hands, and 21.7 million for the non-pairs.
2-Player Formula
The probability of domination in a two player game is easy to calculate. For pairs it is 6×(number of higher ranks)/1225. For example, the probability a pair of eights is dominated is 6×6/1225 = 0.0294, because there are six ranks higher than 8 (9,T,J,Q,K,A).
For non-pairs the formula is (6+18×(L-1)+12×H)/1225, where
Texas Holdem Hand Odds Probabilities Chart
L=Number of ranks higher than lower card
H=Number of ranks higher than higher card
For example, the probability that J-7 is dominated is (6+18×(7-1)+12×3)/1225 = 150/1225 = 0.1224.